Shal and shaker differential contribution to the K+ currents in the Drosophila mushroom body neurons.
نویسندگان
چکیده
Shaker, a voltage-dependent K+ channel, is enriched in the mushroom bodies (MBs), the locus of olfactory learning in Drosophila. Mutations in the shaker locus are known to alter excitability, neurotransmitter release, synaptic plasticity, and olfactory learning. However, a direct link of Shaker channels to MB intrinsic neuron (MBN) physiology has not been documented. We found that transcripts for shab, shaw, shaker, and shal, among which only Shaker and Shal have been reported to code for A-type currents, are present in the MBs. The electrophysiological data showed that the absence of functional Shaker channels modifies the distribution of half-inactivation voltages (V(i1/2)) in the MBNs, indicating a segregation of Shaker channels to only a subset (approximately 28%) of their somata. In harmony with this notion, we found that approximately one-fifth of MBNs lacking functional Shaker channels displayed dramatically slowed-down outward current inactivation times and reduced peak-current amplitudes. Furthermore, whereas all MBNs were sensitive to 4-aminopyridine, a nonspecific A-type current blocker, a subset of neurons (approximately 24%) displayed little sensitivity to a Shal-specific toxin. This subset of neurons displaying toxin-insensitive outward currents had more depolarized V(i1/2) values attributable to Shaker channels. Our findings provide the first direct evidence that altered Shaker channel function disrupts MBN physiology in Drosophila. To our surprise, the experimental data also indicate that Shaker channels segregate to a minor fraction of MB neuronal somata (20-30%), and that Shal channels contribute the somatic A-type current in the majority of MBNs.
منابع مشابه
Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents.
In this study, we perform the first genetic analysis of K+ currents in Drosophila embryonic neurons revealing the identity of the currents present. Unlike muscles, where the presence of Shaker is obvious, Shaker currents are not detectable in these neurons. In contrast, we show that Shal is as important in these neuronal cell bodies as Shaker is in muscles. Only three single-channel currents we...
متن کاملShaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron.
Ionic currents underlie the firing patterns, excitability, and synaptic integration of neurons. Despite complete sequence information in multiple species, our knowledge about ion channel function in central neurons remains incomplete. This study analyzes the potassium currents of an identified Drosophila flight motoneuron, MN5, in situ. MN5 exhibits four different potassium currents, two fast-a...
متن کاملThe major delayed rectifier in both Drosophila neurons and muscle is encoded by Shab.
The delayed rectifier K+ current in Drosophila is similar to the classical delayed rectifier, originally described by Hodgkin and Huxley. Drosophila provides unique tools of mutant analysis to unambiguously determine the genetic identity of this native K+ current. We identified the Shab gene as the exclusive gene underlying delayed rectifier currents in both muscle and neurons. In muscles, a ge...
متن کاملQuantitative single-cell-reverse transcription-PCR demonstrates that A-current magnitude varies as a linear function of shal gene expression in identified stomatogastric neurons.
Different Shaker family alpha-subunit genes generate distinct voltage-dependent K+ currents when expressed in heterologous expression systems. Thus it generally is believed that diverse neuronal K+ current phenotypes arise, in part, from differences in Shaker family gene expression among neurons. It is difficult to evaluate the extent to which differential Shaker family gene expression contribu...
متن کاملDifferential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.
Different K(+) currents participate in generating neuronal firing patterns. The Drosophila embryonic "giant" neuron culture system has facilitated current- and voltage-clamp recordings to correlate distinct excitability patterns with the underlying K(+) currents and to delineate the mutational effects of identified K(+) channels. Mutations of Sh and Shab K(+) channels removed part of inactivati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2005